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Abstract. The first-principles method for calculating the elastic stiffness tensor of composite 
aystals has been given. Applying the present method to the wlutzite and rocksalt s t r u c m  
of AIN under n o d  and elmared pressure up to 25.8 GPa, we have determined the elastic 
stiffness tensor completely f" fint principles. The thenretical values for the m t e  struchm 
at normal pressure in good ageer" with the experimental ones given by Tsubouchi and 
Mikoshiba The elastic stiffness constants have been evaluated from the total enagies of the 
deformed static lattices. These energies have been calculated by using a calculation method 
based on the variational principle. 

1. Introduction 

Although the electronic and elastic properties of composite solids have been studied from 
first principles by a number of researchers [l, 2, 3, 41, no calculation of the elastic stiffness 
tensor of the solids has been reported up to now except for in the work on zincblend+ 
GaAs and AlAs [5,6]. The determination of this tensor on the basis of microscopic theory 
is a rather difficult problem for a structure having internal lattice parameters. When the 
crystal is deformed homogeneously, the internal electric field is induced according to the 
displacement of ions accompanying the deformation of the electron clouds, and this field 
urges the ions to move also. Thus this problem has to he solved self-consistently. The 
energy increment due to the deformation can he expressed as a sum of two parts: one 
is the energy dependent only on the external strain to which the classical elastic energy 
corresponds; the remaining part is the energy dependent on both the displacements of the 
ions in the unit cell and on the external strain. If we extract the first part, which we call 
the extemal strain energy, from the total energy of the deformed lattice, we can calculate 
the elastic stiffness tensor by considering several appropriate homogeneous deformations. 
In the present paper we shall show how to extract the external strain energy for a given 
homogeneous deformation on the basis of first-principles pseudopotential theory [7]. 

Aluminium nitride has a relatively high ionicity among the group of III-V 
semiconductors, crystallizes in the wurtzite structure and transforms to the rocksalt structure 
at about P = 20 GPa at room temperature [8]. This material has attracted much attention for 
possible applications as a dielectric substrate and acoustic wave resonator. Measurements 
of the elastic properties, such as the bulk modulus, longitudinal and transverse elastic wave 
velocities and Griineisen constant [9, 10, 11, 121, have been performed under normal and 
high pressure. Owing to the difficulty i n  growing single crystal these data depend more or 
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less on the porosity of samples, so more precise estimates are required. Applying the surface 
acoustic wave method to thin films, Tsubouchi and Mikoshiba [13, 141 have determined the 
complete set of elastic stiffness, dielectric and piezoelectric constants. 

Using the present method, we have calculated the elastic stiffness tensor for the wurtzite 
and rocksalt structures of aluminium nitride under high pressure. 

R Kat0 and J Hama 

2. Formalism and method 

2.1. 

We shall describe how the elastic stiffness tensor c,,p. can be derived from the total energy 
calculation for solids. 

We consider a strain-free dielectric having no spontaneous polarization. If the dielectric 
is subjected to a small homogeneous deformation characterized by the vector w(z), the 
displacement of the kth ion at the position q(k) in the unit cell is wxitten with the internal 
strain d&) as 

where sea is a component of the strain tensor s defined by 
& (k)  = da (k) + smpqp (k)  (1) 

In equation (1) we use the convention that the sum is to be taken with respect to the 
repeated Cartesian indices, denoted by Greek letters. Hereafter we shall use this convention 
throughout. The increment of the total energy per cell due to the deformation is given up 
to the second order of sap, d&) and E the macroscopic electric field, formally as 

(3) 

where e,,pA are the components of the piezoelectric tensor. Other tensors appearing in 
equation (3) have similar meanings to e.,pA. We do not, however, specify the other 
tensors precisely because we do not use them explicitly in the present discussion. When no 
macroscopic electric field is present the last three terms in equation (3) do not conkibute 
to the energy increment. Since AE' is in the second order of d&), for a given strain 
tensor d,(k) is determined formally by the set of the linear equations derived from 
a AE'/&f,(k) = 0. When the intemal strains are eliminated, the energy increment becomes 
a function depending only on sap, which may be written as 

1 
- Ed.(k)e&+&)Ea - +&$E - E & T . ~ A ~ B A  

k 

(4) 

where c,$pA is the stiffness tensor under constant electric field. Therefore if we obtain 
the minimum energy in the deformed lattice, varying the ion positions in the unit cell, 
but keeping sap constant, we can evaluate the elastic stiffness constants from equation (4). 
Hereafter we shall use c,,~A as ctrpA omitting the superscript E. In quantum mechanics, 
equation (4) is expressed with the use of the variation principle as 

' E  A E  = 

1 
A E  = Pl"€'(~)lHlYs(~)~ - (Y(~)lHlYv(r)) = ~ s , , c , , ~ A s ~ A  +... 
Y&) = 11 + sl-1'zY((l +s)-'r) 
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where Q(r) denotes the ground state wave function of the undeformed structure and 
(Ys(r)~H~Ys(r)) should be optimized further with respect to the internal parameters when 
they are present in order to extinguish the excess forces acting on respective ions. On the 
basis of equation (4) we shall describe the method of the calculation of the elastic stifmess 
tensors for both the wurtzite (C&) and rocksalt (0;) structure of AN. 

2.1.1. Wurtzite structure. In Voigt’s notation the elastic stiffness tensor c is expressed as 

C1Z C11 c13 0 0 O l  0 
C11 C12 c13 0 0 

1 with C66 = ~ ( ~ 1 1  - c12). Let us introduce five types of homogeneous deformation 
w;(z), shown in table 1. For these deformations the energy increments AE derived from 
equation (4) are also shown in the same table. The table shows that if we obtain the values 
of AE; (i = 1,2, . . . , 5 )  we can determine [c;j] completely. With the help of table 1 the 
basic translation vectors of the deformed lattices a,i can be derived readily from the basis 
vectors of the hexagonal lattice delined in the Cartesian coordinates as 

with Q and c as the lattice constants. The results for the five deformations are shown in the 
same table. The sets of a,j for the deformations 1 to 4 constitute monoclinic lattices and 
that for the fifth deformation constitutes a triclinic lattice. 

Table 1. Wurtzite struehlre: the five deformations w;(i) with a: as a small constant used in 
the calculation of the elastic sIjffness tensor C and the corresponding energy increments AE;. 
The basis vectors a.! of the deformed lattice generated by the ith deformation wi(x)  are given 
by %; =a, + vui. Au the vectors are expressed in Cartesian c00rdina.k~. 

The problem remaining is that of how to search €or the energy minimum configurations 
d(k) effectively in the respective deformed lattices. The wurtzite structure consists of a 
stack of network structures of triangles constructed from AI and N ions along the c-axis, 
and the networks of the respective ions are the same forms when they axe projected on the 
(001) plane (see figure 1). 

The projected network of Al ions at x3 = fc is shifted from that at x3 = 0 by -5h 
with 

(8) 1 h = p(a1; - au.). 
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0.975 1.000 1.025 . .________..__. - ./U0 

Figure 1. A pictoorial representation of the internal Figure 2. The equi-energy c w e s  in the intemal 
parameters for the wurfzite s ” r e .  (a) Definition of parameter space (U. 1) in the wurtlite structure at 
1: the triangles of the same ions projected on the (001) VIVO = 1.00. (UO. b) are the experimental 
plane. The figures are the same for Al and N ions. 0) values, equal to (0.3821, i). The solid square and 
Definition of U: the closed and open circles represent circle represent respectively, the calculated pin t  and 
Al and N ions respectively. minimum energy pint. 

Since for the deformations wj up to i = 4 with no internal strain the lattices are symmetric 
with respect to (a) the product of the exchange of Al and N ions and inversion about 
(0, 0, f ( 1  + u)c), @) the reflection about the ( X I ,  x3) plane and (c) the glide reflection 
about the (xz, x3) plane with translation vector (0.0, 1.). we consider internal sfmin which 
preserves this symmetry. Therefore the non-equivalent ion positions in the unit cell for the 
respective lattices can be written generally as 

(9) 

+ az) + th + UU3i  

(10) 

where the intemal parameters U and t range over 0 < U < and 0 c t c i, respectively. 
Thus we get the minimum energy by scanning the internal parameter space (U, t )  on the total 
energy for each structure. The search for the energy minimum becomes complicated for 
the fifth type of deformation. The set of basis vectors ( ~ 1 5 ,  -5, a35) constitutes a triclinic 
structnre. In the structure, the oblique triangle networks of the respective ions stack along 
the x3-axis. For this type of deformation the symmetry of the lattice is lower than for the 
others, ands consists of only (a) and (c). Considering intemal strain which maintains this 
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symmetry, the ion positions are expressed as 

with 

where e, q ,  5 are the internal parameters to be varied in searching for the minimum energy. 

2.1.2. Rocksalt structure. The elastic stiffness tensor is written in Voigt’s notation as 
equation (6) with c33 = cil ,  c13 = c12 and c a  = c ~ .  In order to calculate the cij from 
equation (4), we introduce three types of deformation wf(x) given in table 2. From the 
energy increments AEi shown in the table due to the respective deformations wf(x), the 
relations of cij and AEi are evident. For the three types of the original undeformed, 
i.e. rocksalt, structure is transformed respectively to the body-centred tetragonal, face- 
centred orthorhombic and body-centred orthorhombic structure. They have one, two and 
one pair of Al and N ions in the unit cell respectively. Considering the site symmetries of 
these smctutes, it is obvious that the energy minimum configurations in these structures 
are those with r(Al) = 0 and r(N) = i(ali fazi +a3i) or vice versa with a,( as the basis 
vectors of the respective structures. 

2.2. 

In the present theory the total energy of the system is calculated by using the first-principles 
pseudopotential method. Based on the density functional theory [U] within the local density 
approximation (LDA) [16] the total energy of a crystal measured from that of isolated ions 
and electrons is written, with pseudopotentials in Rydberg units, as [7] 

+./ P ( % , ( P ( ~ ) )  dr. (14) 

@kn(r) is the wave function of the valence electrons of band index n and wave vector 
k. The indices k and n in the summations run thmugh the occupied states. & is the 
projection operator on angular momentum e, and Ut is the angular-momentum-dependent 
pseudopotential. R and Z are the position vector and the charge of ions respectively. p is 
the valence electron density, which has the form 

P ( r )  = c@~(~b(r). 
k.n 
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The last term is the exchangecorrelation energy. The gound state wave functions are 
derived from the variational condition for Etoa. The Bachelet-Hamann-Schliter (BHS) 
potential [ 171 has been used for Ut; it is derived from an all-electron LDA calculation for 
an atom. 

R Kat0 and J H a m  

Table 2. Rock& smcinre: the three types of deformations w;(x) and the componding 
energy increments AE; used in the calculation of the elastic stiffness tensor c with a; as a 
small constant. The basis vectors %; of the deformed lattice generated by the ith deformation 
w;(x) are given by %; = a. + va;. All the vectors are expressed in Cartesian cwrdinates. 

For the local exchangecorrelation energy we have used the form given by Perdew and 
Zunger [IS], which is based on the numerical results of stochastic simulations of the uniform 
electron gas by Ceperley and Alder [19]. For sampling the k-points in the irreducible wedge 
of the Brillouin zone (mz) we adopt the special-point method 120,211. 

We take eight and ten points in the mz for the wurtzite and rocksalt undeformed 
structures, respectively. With this choice the electronic density and total energy are 
calculated accurately [21, 221 (The total energy differences have not changed within 

Ryd/pair for sampling of 8 to 42 and 10 to 20 k-points, respectively, for the wurtzite 
and rocksalt structure.) 

More special points are taken for the deformed lower-symmetry crystals which have 
larger volumes of the IBZ. We use sets of special points which have similar density in the 
BZ to that of the undeformed crystal. The cut-off value of the kinetic energy for the plane 
wave basis set is taken to be 34 Ryd which corresponds to the inclusion of about 950 plane 
waves in  consmcting the secular matrix. In practice we have used the symmetrized form 
in order to reduce the secular matrix when we could do so. In expanding the electronic 
density, effective potential and exchangecorrelation energy in terms of the Fourier series 
of the reciprocal lattice vector G, we have to take care of their convergence. From our 
analysis we have found that the calculated total energy depends greatly on the number of 
G-vectors used. 

In the present calculation we have taken into account about 3200 G-vectors: We have 
confirmed that the total energy remains unchanged within lo4 Ryd/pair for further inclusion 
of larger G-vectors when the cut-off value for the plane wave basis set is taken to be 34 
Ryd. When A E  of a 10% strained lattice has Ryd/pair error, the errors of the diagonal 
elements of the stiffness tensor are at most 2 GPa. 

In computing the total energy for systems of varying size, the truncation of the basis set 
due to the kinetic energy cut-off introduces a discontinuity in the total energies whenever 
the number of plane waves used changes abruptly. To remedy this shortcoming we adopt 
the finite-basis correction method given by Francis and Payne [23]. This method improves 
the accuracy of the total energy differences without increasing the number of basis set 
elements. The method reduces computational effort, especially in our case where a lot of 
slightly different lattices should be considered. 
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3. Results for the wurtzite structure 

3.1. 

We have calculated the total energies of the wurtzite ( i.e. strain-free) structure in the 
intemal parameter space ( u , t )  at VIVO = 1.00 with VO (= 12.56 cm3 mol-') I%] as 
the experimental equilibrium volume. Figure 2 shows the equi-energy map constructed 
from the nine values calculated by using the two-dimensional fitting method with third- 
order polynomials where the c/a ratio takes the experimental value (1.601) [%]. The 
energy minimum point is located at (U. t )  = (0.3832,0.3333). These values are in good 
agreement with the experimental values ( u o . ~ o )  = (0.3821, 4) [24]. The parameter t 
is fixed at $ in the ordinary wurtzite smcture. From the results it has been confirmed 
that the experimentally observed values of U and t certainly realize the energy minimum 
configuration. The minimum energy obtained will be used in calculating AEi. 

3.2. 

We have calculated the total energy for 9 to 11 and 27 sampling points respectively in the 
intemal parameter space (U. t) and (e, q, 5 )  in each deformed structure at V/Vo = 1.00 
where the deformation parameter ui defined in table 1 is taken to be -0.050 to 0.050 
or -0.100 to 0.100 for the respective sampling points.' We show, for example, the qu i -  
energy maps for the structures generated from z ~ & )  and w.&) in figure 4 and figure 3, 
respectively. 

Here we point out that the relaxation of the ion position in the deformed structures 
is very important in calculating [cijl. Figure 5 shows the total energy versus U; curves 
for the relaxed and unrelaxed Configurations in the deformed structures corresponding, 
respectively, to tq(z) and w&), where the unrelaxed values of (U, t) are taken to be 
the equilibrium ones of the ordinary wurtzite structure. The figures show that to use the 
unrelaxed configurations may produce significant errors in evaluating [cij]. Figure. 6 shows 
the variations of (U, t) or (5,  q. 5 )  versus ui for wi(z), i = 1 to 5. From the figure we 
can see that the intemal parameters change appreciably from the equilibrium values of the 
ordinary w d t e  structure. It is interesting to ohserve the changes of the bond lengths and 
angles induced by the deformations for both the relaxed and unrelaxed configurations, which 
are shown in figure 8. The definitions of the bond lengths and angles are given in figure 7. 
Figure 8 shows that the unrelaxed structure leads to an appreciably different configuration 
under deformation in contrast to the relaxed one. 

3.3. 

Based on equation (4) with the results in 3.1 and 3.2, we have determined the values of 
cij at V/Vo = 1.00: As shown in table 1, AE is proportional to square of the deformation 
parameter U;. From the coefficients of U; estimated by least-squares fitting from data for 
five points, we have derived the values of cij. In table 3 we tabulated the theoretical values 
of cij together with experimental ones obtained by the surface acoustic wave method using 
thin films at room temperature. The theoretical values from the relaxed configurations 
are in good agreement with the experimental ones. The calculation from the unrelaxed 
configurations, however, gives rather higher values than the experiment for the diagonal 
elements of the tensor. This observation seems to be reasonable because a higher-energy, 
nnrelaxed configuration must be more resistive, i.e. more stiff, against a small deformation 
than the relaxed one. 
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la) u,=-o.oso ., - 
0.900, 

1.000 

0 . - - 
1.100 

0.975 1.000 1.025 
UI"0 

(cl U,= 0.025 

F i w  3. The equi-energy c w e s  in the deformed lattice g e n e r a t e d  f" the. wunzite lattice af 
V/Vo = 1.00 by wd(z). (a) uz = -0.050, (b) uz = -0.025. (c) m = 0.025 aod (d) 02 = 0.050. 
The notation is the same as in figure 2. 

3.4. 

At room temperature aluminium nitride transforms from the wurtZite structure to the rocksalt 
structure at about P = 20 GPa and for V /  VO = 0.93. We have performed the calculation 
of [cjj] at V/Vo = 0.95 and 0.90 where we have assumed the locations of the energy 
minima to be the same as they are for V/Vo = 1.00. In calculating AE we added an 
isotropic and constant deformation w&) = UO(XI, XZ,X3) with uo = (V/VO)'/~ - 1 to the 
respective wj(z) in table 1 in order to reduce the cell volume to V .  Figure 9 shows the 
total energy versus uj curves for VIVO = 0.95 and 0.90 together for V/V, = 1.00 where 
the energies are measured from the energy in the undeformed structure at VIVO = 1.00. In 
figure 9 (a) and (c) the asymmetry of the curves with respect to the origin results because 
the strains vary the volumes of the lattices. This effect vanishes for w ~ ,  w4 and wj. The 
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(a) 04=-o.oso 
(mRy, I pair) 0.900,' ' ' ' ' ' " ' ' ' ' 

' .I 

1.100 
0.975 1.000 1.025 

uluo 

(c) o 4= 0.025 
(mRy / pair) 

0.900 ' ' * ' ' ' , " ' ' ' ' ' 

Q) 0,=-0.025 
(mRy,/pair) 

0.900 ' ' ~ ~ ' " ' ' ' ~ '  " 

1.00 

0 . ., 
., 

1.100 1. , I . . . . I . . . . , 
0.975 1.000 1.025 

UIUO 

(d) U4= 0.050 
(mRr, I pair) 

0.900 " ~ " " " " '  " 

0.975 1.000 1.025 
uluo 

1 . 1 0 0 1 -  
0.975 1.000 1.025 

u1uo 

m e  4. The eqmenergy curves in the deformed lattice generated hum the wurtzite lattice at 
VIVO = 1.W by Wz(Z) .  (a) U4 = -0.050. 0) u4 = -0.025. (c) u4 = 0.025 and (d) ~4 = 0.050. 
The notation is the same as in figure 2. 

numerical results for [cij] at VIVO = 0.95 and 0.90 are tabulated in table 3. From the 
table we can see that c11 and c33 increase hut ca and cas decrease with increasing pressure 
under the transition pressure. Recently Ohta et a2 have measured elastic wave velocities 
under high pressure up to 4 GPa [25] and found that the longitudinal velocity increases 
with pressure and the hamverse velocity decreases slightly with pressure. The observations 
agree qualitatively with the present theoretical prediction of the pressure dependence of cij,  

though the pressure dependences of ea,gA and the dielectric tensor under constant strain are 
necessary for detailed discussion. Unfortunately, at present we have no precise information 
about pressure dependence of e,,ji and the dielectric tensor under constant strain. 

Taking a uniform deformation W O  = u&1, xz, x3) in equation (4), the isothermal bulk 
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Figure 5. The total energy versus strain ai far the relaxed and unrelaxed configurations in 
the svuclure generated fsom the wurtdte structure at VIVO = 1.00 by wi(x). The energy is 
measured relatively from the wurai[e svuuure. (a) W I ( Z )  and @) WAX) .  

(4 

1.1 ~ . 
1 --__ e ---__ 

s 
... - 
. 

0.9 
-0.1 

at 

U 0. 42 U u.1 
0.95 , I , , , , , , , , , 0.95 , , , , , , , , , , , 

” .us 
a4 0 5  

Figure 6. Variation of the internal paramelers versus strain ai. uo and to denote, respectively, 
the experimental values of the write s u u m  at VIVU = 1.00. (a) For al, @) for m, (c) for 
q, (d) for ad and (e) for as. 

modulus B = -V(aP/aV) is written in terms of the elastic stiffness constants as 

On the other hand B can be calculated from the total energy versus volume curves with the 
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b3 I-1- 

bl 
F i p  7. Definitions of the bond lengths b and angles B for 
the deformed structures. 

Table 3. The elastic stiffness cnnstants cij (GPa) and the isothermal bulk modulus B (GPa) 
in the wundte structure. The parentheses denote the value for the unrelaxed configuration and 
square brackets denote the value of B derived from cip The experimental values of cij are 
mom temperature values given by Tsuboucbi and Mikoshiba [13, 141. e66 = f(e11 - qz), 
B = $(2cii + 0 3  + 2 1 2  +4c13). 

Theory Experiment 

VIVO 1.00 0.95 0.90 1 .oo 
P (GPa) 0.0 12.4 25.8 0.0 .~ 
CII 380 (445) 421 (495) 447 (564) 345 
-3 382 (456) 391 (503) 421 (579) 395 

114 (85) 176 192 125 
C13 127 (63) 150 146 120 

C66 133 (180) 123 127 110 

B 207 [2091 236 [2431 261 [254] [u)2] 

e44 109 (129) 104 (128) 114 (135) 118 

help of B = V ( a 2 E / a V Z ) .  To check the consistency of the present calculation we compare 
these values in table 3. The agreement is excellent. For the case of u3 we have confirmed 
that the volume variation of U is weak other than for large deformations (see figure 10). 

4. Results for the rocksalt structure 

The rocksalt structure is the high-pressure phase of aluminium nitride. In this phase 
the deformed structures, generated by the homogeneous deformations wf(x) defined in 
table 2, are themselves the relaxed configurations. We have carried out the total energy 
calculation for the deformed and undeformed sblllctures at VIVO = 0.819.0.780 and 
0.750. To reduce the volume from VO to V ,  we add an isotropic and constant deformation 
wo(r) = u o ( x l , x z , x ~ )  with uo = (V/Vo)'P - 1 to each w;(x) defined in table 2. In 
figure 11 we show the total energy versus strain curves for wf and w;. In figure ll(a) 
the asymmehy of the curves with respect to the origin results because the s&ains vary the 
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Figure 8. Variaiion of the bond lengths 
9. 

1.8 x e 2  - 
- relaxed 0, 

unrelaxed = 0, 
-0.1 0.0 0.1 

0 1  

I . . . . ,  
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2.0- 
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9 1.9- 

2 
D - 
m 

1.8- 

1 8  . . . .  1 . - . . * 1  
-0.1 0.0 0.1 

0 3  

b and angles 0 Venus strain U;. (a) For a1 and @) for 

volumes of the lattices. This effect vanishes for w;. From the curves we estimated the 
values of c11 and c~ by applying the least-squares fitting method to five sampling points. 
The constant CIZ was estimated from the relation 

B = -(cl1 + & I d  (16) 

where the isothermal bulk modulus was calculated from the total energy versus volume curve 
of the undefonned rocksalt structure using the relation B = V(a2E/aV2).  The numerical 
results are tabulated in table 4. 

1 
3 

5. Conclusion 

In the present paper we have developed a method for the complete determination of the 
elastic stiffness tensor of compound crystals from first principles. When a compound 
crystal is subjected to anisoeopic homogeneous deformation, an internal electric field (the 
macroscopic plus Lorentz field) is prduced and results in the appearance of induced electric 



. VWO 1.w 
& vivo 0.95 
v VWO 0.90 

P i p  9. The total energy versus strain U, curves for the deformed s v u c ~  generated from 
the d t e  sbuchm at V/Vo = l.W by W I ( X ) .  The total energy is measured relatively from 
the u n d e f o d  structure at VIVO = 1.00. The starting relative volume for the anisompic 
deformation w i ( x )  is expressed by V/Vo. (a) For W~(X) ,  @) for w~(x),  (c) for W > ( X ) ,  (d) for 
w&) and (e) for ws(x). 

Table 4. The elastic stiffness constants cij (GPa) and the isothermal bulk modulus B (GFa) 
in the ro&alt Structure. Square brackets denote the value of CIZ derived from CLL and B.  
B = +(Cl, + 2c12). 

VIVO 0.819 0.780 0.750 
P (GPa) -8.0 1.2 9.8 
,211 302 406 518 .. 
ct2 [m 11061 P41 
C44 277 303 324 

B 174 206 229 

dipole moments. Therefore the ions rearrange their positions in the unit cell to reduce the 
system energy. The energy increase due to the effect is called the internal strain energy. 
Since the intemal strain and electric field are mutually interrelated, it is very difficult to 
solve this problem self-consistently. However, we have shown that the intemal strain energy 
can be removed from the theory if we find the configuration which gives the minimum total 
energy in the deformed lattice generated by a given external strain S. In the present paper 
we call this the relaxed configuration in the deformed lattice. If the relaxed configuration 
is obtained, the energy increase due to the homogeneous deformation can be expressed in 
terms of the external strain only. Thus the problem reduces to the o r d m q  etastic theory. 



7630 RKatoandJHama 

(4 lmRv I uau) 

0 3  

Figure 10. The cu~ves for U versus q. The dotted c w e  denotes the energy minima at constant 
9. (a) VIVO = 1.00, (b) VIVO = 0.95 and (c) VIVO = 0.90. 

The remaining problem is that of how to search for the relaxed configuration in the deformed 
lattice. By calculating the total energy for the possible configurations in the internal 
parameter space with the help of the first-principles pseudopotential method, we have 
determined the relaxed configuration. We have applied the present method to aluminium 
nitride. The theoretical values of the elastic stiffness constants are in agreement with the 
experimental ones within limits of 3-16%. The experimental values were derived from 
the measured data by using a non-linear fitting method in the space of eleven parameters. 
Therefore it is not necessarily clear at present whether the source of the difference is 
theoretical. As far as we are aware, this is the first attempt at a complete determination of 
the elastic stiffness tensor of a composite crystal which has internal lattice parameters to be 
optimized from first principles. 

The present method differs from the method based on the stress theorem [5, 261. To 
obtain reliable values of elastic constants, larger numbers of plane waves have to be used 
in the calculation based on the stress theorem than in the total energy calculation, because 
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Figure 11. The total energy versus suain a w e s  for the structures generated from the roclsalt 
smchue at VIVO = 1.00 by wf(x) in the table 2. The leaer VIVO denota the relative 
volume at which the deformation wf(x) begins. The total energy is measured relatively h m  
the undefomd s t ~ c h u e  at VI Vo = 0.7848 which is the theoretical equilibrium volume of this 
phase. (a) For w;(z) and (b) for w;(x). 

the former calculation in contrast to the latter one is not based on the variation principle. 
When treating a solid which contains row LI elements, these numbers become significant. 
As was shown previously 1271, the difference between the total energies of systems of nearly 
the same size can be accurately calculated for numbers of plane waves very much smaller 
than those required to ensure convergence of the absolute energies. A merit of the present 
method is the effective use of this fact. The present paper has demonseated an efficient 
method for treating the case where internal displacements are present and has shown the 
results obtained by an actual application to AIN. 
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